

Department of CIVIL AND ENVIRONMENTAL ENGINEERING

CEE212L Solid Mechanics Lab STRUCTURAL ENGINEERING LABORATORY

NORTH SOUTH UNIVERSITY Center of Excellence in Higher Education The First Private University in Bangladesh

NORTH SOUTH UNIVERSITY

Center of Excellence in Higher Education The First Private University in Bangladesh

CEE 212L STRUCTURAL ENGINEERING LABORATORY

SL. No.	Name of the experiment
1	Tension test of mild steel specimen
2	Compression test of timber specimen
3	Impact test of metal specimen
4	Test of helical spring
5	Direct shear test of metal specimens
6	Static bending test of beam
7	Hardness test of metal specimen
8	Buckling Test of Slender Columns

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 01 TENSION TEST OF MILD STEEL SPECIMEN

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 01 TENSION TEST OF MILD STEEL SPECIMEN

1. OBJECTIVE:

- i. To test a mild steel specimen to failure under tensile load.
- ii. To draw stress-strain diagram.
- iii. To study the failure characteristics of mild steel.
- iv. To determine different properties of mild steel specimen.

2. APPARATUS:

i. Extensometer	ii. Balance
iii. Slide calipers	iv. Measuring tape

3. MACHINE:

i. Universal Testing Machine (UTM).

4. SPECIMEN:

Standard round specimen (ASTM E8)

5. PROCEDURE:

Follow Class.

6. REPORT OF TENSILE TEST FOR MILD STEEL SPECIMEN:

	Total Lengt	Total Length,Lt=			Final length after test=			
	Diameter=			Weight=				
	Area, A=			Area at r	ecking,	Ao=		
	Length betw	veen grippers	s, Lo=	Extensor	neter lei	ngth, Le=		
σ _u σ _γ	Stress, σ	•						
σ _{pf}	ļ <i>f</i>				σ	Ultimate Stress		
σ_{pl}	/				σ _f	Fracture Stress		
	/				σγ	Yield Stress		
	/				σ_{pl}	Proportionality limit		
	Elastic	Yielding	Strain Hardening	Necking	Strair	n, E		
	Elastic		Plastic behavior					
	behavior		Various parts of	the stress-st	rain cu	<u>rve</u>		

Data Table:

Obser-	Load	Stress	Elongation	~ .	
vation No.	(kN)	(N/mm ²)	(mm)	Strain	Remarks

7. GRAPHS:

- Draw complete stress-strain diagram.
- Show all the points in the graphs.

CEE 212L Solid Mechanics Lab, NSU

Fill the following (with appropriate units)

Proportional limit =	Breaking stress =
Yield stress =	Modulus of elasticity =
Modulus of resilience =	Ductility: (a) % elongation =
Ultimate strength =	% reduction in area =

8. SAMPLE CALCULATIONS:

9. DISCUSSIONS:

(Discuss on the results found, graphs, and failure patterns and also compare the results found graphs and failure patterns.)

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 02 COMPRESSION TEST ON TIMBER SPECIMEN

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 02 COMPRESSION TEST ON TIMBER SPECIMEN

1. OBJECTIVE:

- i. To perform compression test of timber specimen on UTM.
- ii. To study the effects of parallel and perpendicular loading.
- iii. To study the failure characteristics of the timber specimen.

2. APPARATUS:

i. Balance ii. Slide calipers iii. Measuring tape

3. MACHINE:

i. Universal Testing Machine (UTM).

4. SPECIMEN:

i. 2"X2"X8" wooden block (ASTM D143)

5. PROCEDURE

Follow Class.

6. FAILURE PATTERNS:

Schematic diagram of failure pattern of wooden specimens

Parallel Loading:

- a = crushing,
- b = wedge split,
- c = shearing,
- d = splitting,
- e = compression and shearing parallel to plane,
- f = brooming or end rolling,
- g = bending or buckling,

7. REPORT OF COMPRESSION TEST FOR TIMBER SPECIMEN:

Initial Height=	Volume=
Width=	Weight=
Area, A=	Density=

DATA TABLE:

Specimen	Area	Load	Stress	Deformation	Strain	Failure
No.	(mm ²)	kN	(N/mm ²)	(mm)		Туре

8. SAMPLE CALCULATIONS:

9. DISCUSSION:

(Discuss on the results found, graphs, and failure patterns and also compare the results found graphs and failure patterns.)

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 03 DIRECT SHEAR TEST OF METAL SPECIMEN

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 03 DIRECT SHEAR TEST OF METAL SPECIMEN

1. OBJECTIVE:

- i. To determine the shear strength of given material subjecting to fail under double shear.
- ii. To determine the average strength in double shear.

iii. To observe the shape & texture of the fractured surface.

2. APPARATUS:

i. Johnson's shear tool ii. Slide Callipers

3. MACHINE:

i. Universal Testing Machine (UTM).

4. SPECIMEN:

i) High carbon steel (H.C.S) rod ii) Mild steel rod (Various dia.)

5. PROCEDURE

Follow Class.

6. REPORT OF DIRECT SHEAR TEST FOR METEL SPECIMENS:

Specimen	Diameter	Area	Shear force	Shear Stress	Average Shear
				(1 wo Face)	Stress

7. SAMPLE CALCULATION:

8. DISCUSSION:

(Discuss on the results found, graphs, and failure patterns and also compare the results found graphs and failure patterns.)

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 04 TEST OF HELICAL SPRING

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 04 TEST OF HELICAL SPRING

1. OBJECTIVE:

- i. To find the stiffness of the spring.
- ii. To draw a curve by plotting load against deflection.

iii. To determine different properties of helical spring.

2. APPARATUS:

i. Slide calipers ii. Measuring tape

3. MACHINE:

i. Universal Testing Machine (UTM).

4. SPECIMEN:

Closely-coiled helical spring.

5. PROCEDURE:

Follow Class.

6. REPORT OF HELICAL SPRING TEST:

Height of the spring =

No. of turns (N) =

Radius of spring's wire or rod (r) =

Mean radius of the helix (R) = Dia. of the wire (d) = Area of the spring's rod (A) =

Closely-coiled helical spring

Data Table:

Applied load, (P)	Load Increasing Deflection, δ_l	Load Decreasing Deflection, δ_2	Average Deflection, $\Delta \delta = (\delta_1 + \delta_2)/2$	Actual Stiffness, k = ΔΡ/Δδ

7. GRAPHS:

• Draw a graph by plotting load against deflection.

Fill the following (with appropriate units):

Stiffness of the spring =

Modulus of rigidity, $G = 64 K R^3 N / d^4 =$

Maximum torsional shear stress, $\frac{PRr}{\pi r^4/2} = \epsilon$

ess,
$$\tau_{\text{max}} = \frac{P}{\pi r^2} + \frac{PRr}{\pi r^4/2} = \frac{P}{A} \left(1 + \frac{2R}{r}\right) =$$

Maximum total shear stress

Ratio of max. torsional shear stress to the max. total shear stress (%),=

8. SAMPLE CALCULATIONS:

9. DISCUSSIONS: (Discuss on the results found, graphs)

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 05 HARDNESS TEST OF METAL SPECIMEN

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 05 HARDNESS TEST OF METAL SPECIMEN

1. OBJECTIVE:

i. To determine the Rockwell Hardness Number of metal specimen.

ii. To calculate Brinell's Hardness Number from that of Rockwell's.

iii. To find the tensile strength of the metal from Rockwell Hardness Number by using empirical relationships.

2. MACHINE:

i. Rockwell Hardness Tester

3. SPECIMEN:

i) Mild Steel. ii) Cast Iron. iii) Stainless steel.

4. PROCEDURE:

Follow Class.

5. REPORT OF HARDNESS TEST FOR METAL SPECIMENS:

For RB 35 to RB 100

$$BHN = \frac{7300}{130 - RB}$$

For RC 20 to RC 40

For RC 41 or greater

20000	$_{BHN} - \frac{25000}{2}$
$BHN = \frac{20000}{100 - RC}$	$DIIIV = \frac{100 - RC}{100 - RC}$

Data Table:

No. of Obs.	Specimen	Applied Load	Used Scale	Rockwell Hardness Number	Mean RHN	Brinell Hardness Number, BHN	Tensile Strength

6. SAMPLE CALCULATIONS:

7. DISCUSSIONS:

CEE 212L Solid Mechanics Lab, NSU

HRC	Appx. Tensile Strength (ksi)	HRB	Appx. Tensile Strength (ksi)
68	-	100	116
67	-	99	114
66	-	98	109
65	-	97	104
64	-	96	102
63	-	95	100
62	-	94	98
61	-	93	94
60	-	92	92
59	351	91	90
58	338	90	89
57	325	89	88
56	313	88	86
55	301	87	84
54	292	86	83
53	283	85	82
52	273	84	81
51	264	83	80
50	255	82	77
49	246	81	73
48	238	80	72
47	229	79	70
46	221	78	69
45	215	77	68
44	208	76	67
43	201	75	66
42	194	74	65
41	188	73	64
40	182	72	63
39	177	71	62
38	171	70	61
37	166	69	60
36	161	68	59
35	156	67	58
34	152	66	57
33	149	65	56
32	146	64	-
31	141	63	-
30	138	62	-
29	135	61	-
28	131	60	-
27	128	59	-
26	125	58	-
25	123	57	-
24	119	56	-
23	117	55	-
22	115		
21	112		
20	110		

Approximate relationships of hardness values and approximate tensile strength of steels.

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 06 IMPACT TEST OF METAL SPECIMENS

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 06 IMPACT TEST OF METAL SPECIMENS

1. OBJECTIVE:

i. To find energy absorbed in fracturing mild steel and cast iron specimens under impact load.

2. APPARATUS:

i) Slide Calipers

3. MACHINE:

i. Pendulam Impact Tester.

3. SPECIMEN:

Mild steel and cast iron specimen of the following types: i) Charpy simple beam. ii) Izod cantilever beam. iii) Charpy tension rod.

4. PROCEDURE:

Follow Class.

5. REPORT OF IMPACT TEST FOR METAL SPECIMENS:

- Izod Test: Angle of hammer before striking = 90°
- Charpy Test: Angle of hammer before striking = 135°

Data Table:

Type of Specimen	Material of the specimen	Cross sectional area, ANotch	Initial error (i)	Energy absorbed (E)	Corrected energy (E-i)	Impact toughness, U= (E-i)/A _{Notch} (J/mm ²)
Izod cantilever beam	Mild Steel					
	Cast Iron					
Charpy simple beam	Mild Steel					
	Cast Iron					
Charpy tension rod.	Mild Steel					
	Cast Iron					

6. SAMPLE CALCULATIONS:

7. DISCUSSIONS:

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 07 SLENDER COLUMN TEST FOR DIFFERENT END CONDITIONS

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 07

SLENDER COLUMN TEST FOR DIFFERENT END CONDITIONS

1. OBJECTIVE:

- i. To determine the critical load or buckling load of slender columns.
- ii. To compare the experimental and theoretical critical loads.

iii. To draw the column strength curves.

2. APPARATUS:

i. Slide calipers ii. Column testing apparatus. iii. Weights

3. SPECIMEN:

i. Columns of different length.

4. PROCEDURE:

Follow Class.

5. REPORT OF SLENDER COLUMN TEST:

Effective length of various condition-

End Condition of the Column	Effective Length
Both end hinged	1.0 <i>l</i>
One end hinged and one end fixed	0.707 <i>l</i>
Both end fixed	0.5 <i>l</i>
One end fixed and one end free (Cantilever)	2.0 <i>l</i>

DATE TABLE:

No.	End	Dia of	Х-	Radius	Length	Eff.		Critical	Critical	Theo. Critical
of	Condi-	the	sec.	of	of the	Length	Le/r	Load	Stress	Stress
Obs.	tion	Column	Area	Gyration	Column	(Le)		in lbs	in psi	$\sigma = \frac{\pi^2 E}{2}$
		(d)	(A)	(r)	(L)			(P)	P/A	$0_{\rm cr} = \frac{1}{(Le)^2}$
										$\left(\frac{r}{r}\right)$
1	Dath									
2	end									
3	hinged									
4										
1	Ora									
2	fixed									
3	one									
4	ningeu									
1	Dath									
2	end									
3	fixed									
4										

6. SAMPLE CALCULATIONS:

7. GRAPHS:

i. Critical Stress Vs Slenderness Ratio.

8. DISCUSSIONS:

CEE 212 SOLID MECHANICS LAB WORKBOOKS FOR LABORATORY PRACTICE

EXPERIMENT NO: 08 STATIC BENDING TEST OF TIMBER BEAM

Name:

ID:

Group:

Section:

Performance Date:

EXPERIMENT NO: 08 STATIC BENDING TEST OF TIMBER BEAM

1. OBJECTIVE:

i. To study the behavior of a timber beam under load.

ii. To verify Navier's theorem, $f = \frac{My}{l}$

iii. To find different results of a wooden beam by conducting bending test.

2. APPARATUS:

i. Slide calipers ii. Beam bending apparatus.

3. MACHINE:

i. Universal Testing Machine (UTM).

4. SPECIMEN:

i. Timber beam.

5. PROCEDURE:

Follow Class.

6. REPORT OF FLEXURE TEST FOR TIMBER BEAM:

Date Table:

Load	Top Hole		Bot. Hole		Deflection	Strong	Momont	
	S.G.R	Unit Strain	S.G.R	Unit Strain	Denection	f	M	Rotation θ

Results:

Maximum Stress =

Flexural rigidity of the section (EI) =

7. SAMPLE CALCULATIONS:

8. GRAPHS:

a) Load vs Deflection.

9. DISCUSSIONS: